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Abstract 

T-cell acute lymphoblastic leukemia is caused by the accumulation of multiple oncogenic 

lesions, including chromosomal rearrangements and mutations. To determine the frequency 

and co-occurrence of mutations in T-cell acute lymphoblastic leukemia, we performed 

targeted re-sequencing of 115 genes across 155 diagnostic samples (45 adult and 110 

childhood cases). NOTCH1 and CDKN2A/B were mutated/deleted in more than half of the 

cases, while an additional 37 genes were mutated/deleted in 4 to 20% of cases. We 

identified the IL7R-JAK pathway to be mutated in 27.7% of cases, with JAK3 mutations being 

the most frequent event in this group. Copy number variations were also detected, including 

deletions of CREBBP or CTCF and duplication of MYB. FLT3 mutations were rare, but a 

novel extracellular mutation in FLT3 was detected and confirmed to be transforming. 

Furthermore, we identified complex patterns of pairwise associations, including a significant 

association between mutations in IL7R-JAK genes and epigenetic regulators (WT1, PRC2, 

PHF6). Our analyses showed that IL7R-JAK genetic lesions did not confer adverse 

prognosis in T-cell acute lymphoblastic leukemia cases enrolled in the UK ALL2003 trial. 

Overall, these results identify interconnections between the T-cell acute lymphoblastic 

leukemia genome and disease biology, and suggest a potential clinical application for JAK 

inhibitors in a significant proportion of T-cell acute lymphoblastic leukemia patients. 

 

Keywords: targeted sequencing, T-ALL, signaling, tyrosine kinase, epigenetic modulators 
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Introduction 

T-cell acute lymphoblastic leukemia (T-ALL) comprises a group of aggressive hematological 

tumors accounting for 10%-15% of pediatric and 25% of adult ALL cases, which are more 

frequent in males than females1-3. T-ALL development is a multi-step process in which 

different genetic lesions accumulate and alter the mechanisms controlling proliferation, 

survival, cell cycle and differentiation of T-cells. Loss of the CDKN2A (p16) locus and 

aberrant NOTCH1 signaling constitute the most predominant oncogenic lesions involved in 

the pathogenesis of T-ALL. Deletions of the CDKN2A locus in chromosome band 9p21 are 

present in up to 70% of T-ALL,4 while up to 60% carry NOTCH1 activating mutations.1 

NOTCH1 mutations lead to ligand independent cleavage and activation of the intracellular 

NOTCH1 part (ICN) and/or to stabilization of active protein.2 NOTCH1 is an essential protein 

for T-cell development and aberrant activation of NOTCH1 in T-ALL affects many different 

pathways including the cell cycle, NFκB and PI3K/AKT pathways. In addition, T-ALL cases 

harbor chromosomal rearrangements that result in aberrant expression of transcription factor 

genes, such as TLX1, TLX3, TAL1, LMO2, and HOXA.5-10 These chromosomal aberrations 

are often used to classify T-ALL into subclasses associated with expression of one of these 

transcription factors, which in many cases also resembles a specific block in differentiation.11 

 

The mutational landscape of T-ALL also includes somatic mutations of IL7R, JAK3, JAK1, 

PTEN, and NRAS signaling proteins.12-15 Activating mutations in JAK1, JAK3 or IL7R lead to 

activation of the JAK/STAT pathway, resulting in stimulation of the proliferation and survival 

pathways in the leukemia cells. Recent next generation sequencing studies identified further 

recurrent mutations in proteins involved in mRNA degradation and translation (CNOT3 and 

RPL10) and in proteins implicated in the regulation of chromatin structure, including histone 

demethylases (KDM6A/UTX), and members of the polycomb repressive complex 2 (PRC2: 

genes EZH2, SUZ12 and EED). 16-19 Sequencing studies have suggested that on average 10 

to 20 protein altering mutations can be detected in T-ALL cells,18-20 but their exact frequency 

and patterns of co-occurrence have not been investigated in detail in large T-ALL cohorts. 

 

Here, we used Haloplex targeted DNA capture followed by Illumina massive parallel 

sequencing to investigate the coding sequence of 115 recurrently mutated genes in a cohort 

of 155 T-ALL samples. Our results revealed that 40 genes had genetic alterations (combining 

sequence mutations with copy number variations) in more than 4% of cases. Our 

comprehensive sequence analysis identified mutations/copy number variations of the IL7R-

JAK signaling pathway members in 27.7% of T-ALL samples screened; an observation with 

therapeutic potential. Statistically significant pairwise associations were found between 
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different mutations, indicating the presence of functional interactions among different 

pathways in T-ALL pathogenesis. Of significance, we found a mutually exclusive relationship 

between IL7R-JAK mutations and the presence of TAL1/LMO2 rearrangements. We also 

identified positive correlations among IL7R-JAK mutations and mutations/deletions in PHF6 

and members of the PRC2 complex. Our findings begin to unravel the diversity of genetic 

lesions that are implicated in T-ALL development. 

Methods 

DNA samples 

T-ALL patient samples (n=155: 111 children, 44 adults) were collected from various 

institutions (Supplementary Table 1). Diagnosis of T-ALL was based on morphology, 

cytochemistry and immunophenotyping according to the World Health Organization criteria. 

Genomic DNA was isolated from bone marrow (either fixed or fresh bone marrow cells). 5,21,22 

To investigate the prognostic relevance of IL7R, JAK1 and JAK3 mutations, screening for 

mutations in these three genes by Sanger sequencing was performed in an independent 

cohort of 78 T-ALL patients. Those patients were all enrolled into the United Kingdom (UK)_ 

Children’s Cancer and Leukaemia Group (CCLG) ALL2003 trial.23 This study was approved 

byt the ethics committees of the institutes involved and informed consent was obtained. 

Samples and clinical data were stored in accordance with the declaration of Helsinki. 

Capture design 

The SureDesign software was used to design two slightly different Haloplex capture assays 

(Table 1). The total amplicon number for design A was 23127 with a region size of 472.006 

kbp and a predicted target coverage of >99%. For design B the total amplicon number was 

19694 with a region size of 418.373kbp and a predicted target coverage of >99%. For this 

study, 80 samples were processed with Design A and 75 samples with Design B. In both 

assays, the coding exons of selected genes (based on RefSeq, CCDS and VEGA 

databases) were targeted with an extra 10 bases upstream and downstream. Targeted 

regions comprised the coding sequence of genes that were either recently identified as 

recurrently mutated in ALL or other hematological malignancies (known driver genes) or 

were similar to known oncogenes (candidate driver genes) to be sequenced18,19,24,25. For 

statistical analyses we only considered the 115 genes that were sequenced in both Haloplex 

designs (Supplementary Table 2). Library preparation and sequencing was performed as 

described in the Supplementary material.  



 6

Data analyses 

In the NextGENe software (v2.2.1, Softgenetics, State College, PA, USA), we performed the 

following steps: (1) the fastQ output file was converted into a FASTA file to eliminate reads 

that were not “paired” and that did not meet the criteria of the default settings; (2) reads from 

the converted unique FASTA file were aligned to the reference genome (Human_v37.2). 

After alignment a *.pjt file was created and opened in the NextGENe Viewer; (3) a mutation 

report was created using the coordinates from the targeted enrichment kit as a *.bed file to 

enable calling of single nucleotide variants (SNVs) and small insertion/deletions (indels) in 

the regions of interest; (4) an expression report was created from which the mean, minimal 

and maximal coverage per target and targeted nucleotide was calculated. The coverage was 

defined as the average number of reads representing a given nucleotide in the reconstructed 

sequence. To interpret the data, additional custom-filtering criteria were imposed to minimize 

false-positive rates (Supplementary material). Polymorphisms annotated in dbSNP138 or 

1000 Genomes databases were excluded from the analyses. For variant calling we also 

required as a minimum a read depth of 20 and an allele frequency of at least 15%.  

In vitro cell experiments 

JAK3 wild type cDNA and mutants were generated by GenScript, and were cloned into the 

MSCV-GFP vector. Viral vector production, retroviral transduction and culture of Ba/F3 cells 

were performed as previously described.15 Western blot analyses were performed as 

described in the Supplementary material. 

Results 

Sequencing metrics and validation of the gene panel 

Next-generation sequencing studies have contributed significantly to our understanding of 

the genomic landscape of T-ALL. We recently profiled two cohorts of T-ALL using exome 

sequencing (67 cases)18 and RNA-sequencing (31 cases),24 while Zhang and colleagues 

profiled immature T-ALL cases (also known as early thymic or T-cell precursor T-ALL, ETP-

ALL) ETP-ALL using whole genome sequencing (12 cases)19 and targeted re-sequencing in 

94 childhood T-ALL cases. To determine the spectrum of mutations present in both adult and 

childhood T-ALL, we selected 155 T-ALL cases (44 adult/111 childhood) to be analyzed by 

targeted re-sequencing. These cases were derived from two different cohorts from France 

(n= 80) and UK (n= 75). Based on all available sequence data, we selected 115 genes that 

were recurrently mutated in ALL or other hematological malignancies. 

 

We used Haloplex enrichment to capture all exons of the selected genes, followed by 
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Illumina sequencing. Two slightly different designs were used to profile the two T-ALL 

cohorts, which yielded a total of 12.9 Gb of sequence, with capture efficiencies of 45 to 60%. 

The average coverage per sample was 209X. All genes were covered at >20X for at least 

95% of their coding regions (Table 1). After excluding sequencing/mapping errors and known 

polymorphisms, 685 single nucleotide variants (SNVs)-small insertions/deletions (indels) 

were identified in 103 genes as high-probability changes.  

 

In order to validate the accuracy of our Haloplex assay and bioinformatics analyses (to which 

we will refer as Haloplex analyses), we sequenced 158 variants across 33 genes using 

Sanger sequencing (Supplementary Table 3). We confirmed 137 of the 158 predicted SNVs 

and indels (86.7%). Furthermore, we also found that 124 additional SNVs and indels 

(although not validated here by Sanger sequencing), were already described and 

documented in the COSMIC database.26 To determine the sensitivity of Haloplex for 

detection of SNV and indels, we examined sequence mutations in CNOT3 (exon 5, n= 3/79) 

and RPL10 (exon 4, n= 2/79) and indels in IL7R (n= 12/155) and FLT3 (n= 1/155) genes, for 

which Sanger sequencing data were available. Haloplex identified all known point mutations 

in CNOT3 and RPL10, but failed to detect 6 of 12 IL7R indels and 1 of 1 FLT3-ITD 

(Supplementary Table 3). 

 

Data from Haloplex target enrichment can be also used to identify copy number variations 

(CNVs) at the captured loci.27 To this end, we normalized the coverage of all genes against 

the on-target mapped nucleotides across samples. First we looked at X-chromosome genes 

(MTMR8, KDM6A, PHF6, MAGEC3, RPL10 and USP9X). As shown in Figure 1A, all 

samples except one (TL91) showed read depths for X chromosome genes consistent with 

patient gender, with females showing a ~2 fold higher coverage than males. No copy number 

aberrations of MAGEC3 or USP9X genes were found. There was evidence for deletion of 

KDM6A (1 sample), MTMR8 (1 sample) and PHF6 (4 samples), with possible duplication of 

RPL10 (2 samples) or PHF6 (1 sample) genes (Figure 1A, Supplementary Table 3). 

 

To determine the accuracy of Haloplex data for the detection of CNVs, we examined CNVs 

at the MYB (n= 155), CDKN2A (n= 95) and PTPN2 (n= 80) loci for which FISH, MLPA or 

arrayCGH data were available. Overall, 64% (9/14) of cases with MYB duplication, 93% 

(69/74) of cases with CDKN2A deletion and 100% (6/6) of cases with PTPN2 deletion were 

identified by our Haloplex copy number analysis (Figure 1B, Supplementary Table 4). 

Haloplex data predicted four additional cases with MYB duplication that have a lower 

normalized coverage when compared with those samples with true MYB duplications. 

However, as they were not confirmed by any other method, we concluded that these were 
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false positive results. Together, our data indicated that Haloplex re-sequencing data can be 

used for the identification of SNVs and CNVs with high confidence, with deletions being 

easier to detect than duplications. The detection of larger indels is difficult, especially for 

longer insertions. 

Landscape of genetic alterations in T-ALL  

In total, 153 of the 155 patient samples (98.7%) harbored at least one sequence 

mutation/copy number change, with a median number of 5 (1–65) genetic lesions per 

sample. Known T-ALL tumor suppressor genes such as CDKN2A/B, PHF6, PTEN and 

PTPN2 were frequently identified as common targets of gene deletions. From the 115 genes 

analyzed, 40 genes showed genetic alterations (SNV, indel or CNV) in more than 4% of 

cases (Figure 2). Only NOTCH1, CDKN2A and CDKN2B aberrations were found in more 

than 50% of cases. Mutation frequencies of PHF6 (19.4%), FBXW7 (17.4%), WT1 (14.8%), 

PTEN (12.3%), BCL11B (12.3%) and PTPN2 (7.7%) were in the range of previously reported 

frequencies.2 Our data confirmed that JAK3 was frequently mutated in T-ALL (16.1%).19 

Other recently identified mutations were also found including CREBBP (7.7%),28 CNOT3 

(5.2%)18 and RPL10 (5.2%).18 In contrast to AML, FLT3 mutations were rare among the T-

ALL cases, although we identified one new mutation in the extracellular domain of FLT3 

(S471C), which was confirmed to be a transforming mutation (Supplementary Figure 1). 

 

Genes with identified genomic lesions were grouped into functional pathways linked to T-ALL 

pathogenesis (Supplementary Table 2). The most frequently affected pathway was 

transcriptional regulation, with mutations observed in as many as 81.9% of cases, followed 

by genes associated with cell cycle regulation (74.2%), chromatin modification (38.1%), 

genes encoding kinases (29.7%), phosphatases (26.5%) and DNA repair pathways (18.7%).  

 

The mean number and spectrum of some of the identified genetic lesions closely correlated 

with patient age and T-ALL subtype. Alterations in PTPN2 (p=0.005; 18.2% vs. 3.6%), MYB 

(p=0.008; 22.7% vs. 6.3%) and CREBBP (p=0.039; 15.9% vs. 4.5%) were more prevalent 

among adult cases. In contrast, EZH2 (p=0.006, 13.5%) and RPL10 (p=0.106, 7.2%) 

aberrations were exclusively found in children, although the trend did not reach significance 

for RPL10.  

 

We also found new and previously reported correlations between genetic lesions and T-ALL 

subgroups. Immature T-ALL cases had a lower incidence of CDKN2A (p<0.001, 13.3% vs. 

81.9%) and CDKN2B (p<0.001, 13.3% vs. 66.4%) deletions,19 while the incidence of 

mutations in JAK3 (p=0.001, 53.3% vs. 12.9%)19, JAKMIP2 (p=0.010, 26.7% vs. 4.3%), 
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RUNX1 (p=0.020, 20% vs. 2.6%)19 and IL7R (p=0.043, 26.7% vs. 7.8%)19 was significantly 

higher in those cases. Aberrations of PHF6 (p=0.006, 53.8% vs. 16.8%),29 PTPN2 (p=0.018, 

30.8% vs. 6.5%),22 and CDKN2B (p=0.014, 92.3% vs. 55.1%) were more frequently found 

among TLX1 positive cases. TLX3 positive cases had significantly more lesions in CDKN2A 

(p=0.001, 92.9% vs. 68.8%), CDKN2B (p=0.001, 85.7% vs. 52%), DNM2 (p=0.006, 28.6% 

vs. 8%), WT1 (p<0.001, 42.9% vs. 8.8%)30 and JAK1 mutations (p=0.001, 17.9% vs. 0.8%). 

PHF6 (p=0.005, 7.4% vs. 26%),29 JAK3 (p=0.002, 3.7% vs. 23%) DNM2 (p<0.001, 18%), 

PTPN2 (p=0.009, 12%) and WT1 (p=0.001, 1.9% vs. 22%) lesions were underrepresented in 

TAL1/LMO2 positive patients (Figure 3). 

The IL7R-JAK axis is an important oncogenic pathway in T-ALL 

The IL7R-JAK signaling cascade is an essential signaling pathway in hematopoiesis, and 

somatic mutations in IL7R, JAK1, JAK3 and STAT5 have been reported previously in T-

ALL.12,15,18,31 However, the exact frequency of mutations for all members of the signaling 

pathway is unclear. In our series, sequence mutations/copy number variations of the IL7R, 

JAK1, JAK3 and STAT5 genes were found in 27.7% of cases, confirming that this signaling 

pathway is an important oncogenic axis in T-ALL (Figure 4A). Incidences of cases with 

genetic lesions of IL7R, JAK1, JAK3 and STAT5 genes were 9.7%, 4.5%, 16.1% and 4.5%, 

respectively. We found that 5.8% of cases carried combinations of these mutations 

(Supplementary table 2).  

 

We identified JAK3 as the most common targeted member of the pathway (16.1% of T-ALL 

cases). Most mutations were located within the pseudokinase domain, which has a 

regulatory function on kinase activity (Figure 4A). The M511I mutation was the most 

frequent. In 34.7% of JAK3 mutant cases the M511I mutation was detected together with a 

second mutation of JAK3 (Figure 4B). Seven patients had mutations/duplications of IL7R 

(n=2), JAK1 (n=3) or STAT5 (n=2) in addition to a JAK3 mutation. 

 

The majority of JAK3 mutations identified in T-ALL have been confirmed as activating 

mutations,15 but the transforming capacity of four JAK3 mutations identified in this study 

(Q283H, V678L, Q865E and E958K) was not studied previously. We expressed these 

mutants in Ba/F3 cells and confirmed that JAK3 V678L and Q865E were capable of 

transforming the cells to IL3 independent growth (Figure 4C). The JAK3 Q283H and Q865E 

mutants were not transforming (Figure 4C), suggesting that these may be passenger 

mutations. In summary, our results show that the IL7R-JAK signaling pathway is frequently 

mutated in T-ALL, with JAK3 being the most frequently altered gene (14.9% of T-ALL cases 

harbor transforming JAK3 mutations). 
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Mutations of the IL7R-JAK axis and epigenetic modulators are associated in T-ALL 

Having observed that the components of the IL7R-JAK axis were frequently mutated in T-

ALL, we analyzed the possible associations between these mutations and the different T-ALL 

subgroups (Table 2). The cases having IL7R-JAK mutations were more frequently found 

among TLX3+ cases (31% vs. 13.5, p=0.013), immature T-ALL cases (25% vs. 5.5%, 

p=0.002),19 or HOXA+ cases (20.9% vs. 5.4%, p=0.006), but underrepresented among 

TAL1/LMO2 positive cases (p=0.001, 14% vs. 43.2%). Of importance, we observed that 

mutations of IL7R-JAK were positively associated with mutations in epigenetic factors 

(p=0.001, 42.4% vs. 18.8%). More detailed analyses revealed specific associations between 

mutations in IL7R-JAK and PHF6 (p=0.002, 34.9% vs. 13.4%), WT1 (p=0.001, 30.2% vs. 

8.9%), and members of the PRC2 complex (EZH2, SUZ12 and EED) (p=0.033, 27.9% vs. 

13.4%) (Table 2). If we take into account the two JAK3 mutations (Q283H and Q865E) that 

lack transforming potential, the significance of these associations is not altered 

(Supplementary material). Together, these results indicate that functional interactions are 

present between the IL7R-JAK signaling pathway and epigenetic modifiers (WT1, PHF6, 

PRC2). 

Co-occurring mutations and analysis of clonality in cases with IL7R-JAK mutations 

Clonal evolution has been documented in a range of hematological malignancies.32 The 

proportion of sequencing reads reporting a given mutation can be used to identify whether 

mutations are present in the major clone or a subclone at the time of diagnosis.  

 

Overall, we did not observe any specific genes that were more frequently mutated in 

subclones. As we had detected a high frequency of JAK3 mutations, we analyzed the 23 

cases with JAK3 mutations in more detail (Figure 5). Of these cases, 82.6% showed the 

presence of the JAK3 mutation in more than 35% of the cells, indicating that JAK3 mutations 

occur predominantly in the major clone at diagnosis. One of these cases carried a JAK3 

M511I mutation at an allele frequency of 96.4%. As there were no copy number variations 

and the allele frequency for the SNPs present in that genomic region was around 100%, we 

conclude that copy number neutral loss of heterozygosity was responsible for this 

homozygous JAK3 mutation. In cases with two JAK3 mutations or with JAK3 and JAK1 

mutations together, one JAK3 mutation was typically present in the major clone (>40% VAF 

in 9 out of 12 cases), with a minor clone having the second mutation (or both mutations). 

These data confirm that a single JAK3 mutation can contribute to leukemia development, 

while the acquisition of an additional JAK3 or JAK1 mutation is likely to be of benefit for 

driving the growth of subclones during disease progression. 
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Mutations of IL7R, JAK3 and JAK1 genes do not have an adverse prognostic impact 

To gain insight into the clinical relevance of IL7R, JAK3 and JAK1 mutations, we analyzed 

their prognostic significance in a cohort of 78 T-ALL cases treated on the UKALL2003 

protocol.23 Sanger sequencing analyses revealed that 10 of the 78 cases (12.8%) carried 

mutations in IL7R-JAK genes. The seven males and three females were aged 2 to 22 years 

old and 7 were classified as NCI high risk. All patients achieved complete remission within 28 

days but 4/8 were minimal residual disease (MRD) positive at this time point. Eight of the 10 

patients (80%) remain in first complete remission 3.7-6.9 years from diagnosis. The other two 

patients (both carrying IL7R indels) relapsed. One male who presented before his second 

birthday and with a very high white cell count (497x109/L) experienced an isolated central 

nervous system relapse after 9 months and subsequently died. The second patient, a 13-

year-old male, experienced an isolated bone marrow relapse after 18 months, but remains 

alive 3.3 years after an HLA-matched unrelated donor transplant despite failing induction 

after relapse. In conclusion, this cohort of T-ALL patients fared quite well, and there is no 

evidence that IL7R-JAK mutations are associated with a poor prognosis. 

Discussion 

We have performed targeted sequencing of a large cohort of T-ALL cases, coupled with a 

comprehensive study of their genetic background, in order to elucidate molecular lesions and 

their co-occurrence in patient samples. We used Haloplex enrichment to sequence the entire 

coding regions of 115 genes (known T-ALL driver genes or candidate driver genes). We 

showed that Haloplex sequencing for the detection of SNVs is highly specific and sensitive. 

Deletions of entire genes were also detected with a high degree of accuracy. In contrast, the 

detection of gene duplications and indels, such as MYB duplications and insertions into the 

IL7R and FLT3 genes was less reliable, leading to false positive detection of duplications and 

false negative detection of indels. Similar findings were recently shown for targeted re-

sequencing in acute myeloid leukemia, and it was shown that increased coverage could 

improve the identification of copy number alterations in Haloplex assays.27 Haloplex analyses 

should not be preferred over aCGH or MLPA techniques for detection of copy number 

variations, especially for the detection of duplications.  

 

Visual inspection of the reads for IL7R and FLT3 identified mutant alleles with indels, which 

had been missed by the analysis software. However, in most cases the mutant reads were 

missing, suggesting that the mutant exons had not been adequately captured during the 

target enrichment step. These observations highlight the need for further refinements to the 
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alignment algorithms and the capture design for cancer samples, which will greatly increase 

the ability to detect large indels such as those present in IL7R and FLT3.  

 

Once the Haloplex method was successfully validated, we used this approach to 

characterize the mutational profile of a cohort of 155 T-ALL cases. Targeted re-sequencing 

was performed in absence of germline/remission matched DNA and this should be 

considered. However, the fact that we identified known gene mutations/copy number 

variations at the same frequencies in our T-ALL cohort as reported in the literature, confirms 

both the validity of our approach and our cohort. Similar to observations in other tumors, only 

a few genes (NOTCH1, CDKN2A/B) were mutated or deleted in >50% of the T-ALL cases, 

while a large number were mutated in <20% of the cases. These observations corroborate 

the complexity and variation of events underlying T-ALL malignant transformation.  

 

We observed that the IL7R-JAK signaling pathway was targeted in 27.7% of T-ALL. These 

findings have potential therapeutic implications, as JAK kinase inhibitors are known to target 

these alterations. 15,33-38 JAK3 is the most frequently mutated gene (16.1% of T-ALL cases) 

within the IL7R-JAK signaling pathway. Based on the results described in this manuscript 

and our previously published work,15 the transforming capacities of a total of 16 JAK3 

mutants have been tested using the Ba/F3 in vitro cell system. Six of these 16 JAK3 mutants 

(R272H, Q283H, R403H, Q865E, R925S and E1106G) lacked transforming potential, 

illustrating that results from sequencing need to be confirmed by functional assays to 

distinguish driver mutations from passenger mutations. If we exclude the JAK3 mutations 

that lack transforming potential, then the frequency of cases with JAK3 mutations in our 

series is 14.9% (instead 16.1%). 

 

Some T-ALL cases harbored two transforming JAK3 mutations, which suggests that those T-

ALL cells that are dependent on a JAK3 mutation may gain proliferative advantage by 

mutating the second JAK3 allele. In line with this hypothesis, our clonality analysis of JAK3 

mutated cases showed that in those with two JAK3 mutations or a JAK3 and JAK1 mutation 

together, one JAK3 mutation was typically present in the major clone, with the second 

mutation found in a lower percentage of the cells, most likely representing a minor clone.  

 

We also investigated the prognostic impact of mutations of IL7R, JAK1 and JAK3, using data 

from the UKALL2003 trial, in particular because these mutations occur more frequently in 

immature T-ALL, a subgroup of T-ALL initially associated with a poor outcome in some 

studies.39 
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Despite the small subset of IL7R, JAK1 or JAK3 mutant T-ALL patients (n=10) in this cohort, 

it appeared that in general these patients fared well. It should be noted that the outcome of 

immature T-ALL patients has improved since initial reports of this subtype, and that more 

recent data from UKALL2003 and COG AALL0434 suggest immature T-ALL patients may 

not have worse outcome with intensified therapy.23,40  In fact, seven of the 10 patients with 

mutations within the IL7R-JAK pathway received very intensive chemotherapy based on risk 

stratification. Our data provide no evidence that IL7R, JAK1 and JAK3 mutations are a 

consistent marker of poor prognosis. Nevertheless, it might be that immature T-ALL cases 

harboring IL7R-JAK mutations would benefit from the use of JAK inhibitors in T-ALL trials, 

since it might reduce the toxic side effects from high-dose chemotherapy treatments. The 

efficacy of ruxolitinib (JAK1/2 inhibitor) was recently demonstrated in murine xenograft 

models of immature T-ALL.41 Of interest, both JAK/STAT pathway activation and ruxolitinib 

efficacy were independent of the presence of JAK/STAT pathway mutations, raising the 

possibility that the therapeutic potential of ruxolitinib in T-ALL extends beyond those cases 

with JAK mutations.41 Further studies are warranted to clarify this issue. 

 

Importantly, we have found statistically significant associations between gene mutations and 

signaling pathway-groups or T-ALL patient characteristics. These include previously 

described associations between immature T-ALL and JAK3 mutations19, and between TLX1 

positive cases and PHF6 mutations/deletions.29 Our current study points out that mutations 

in PHF6, WT1 and PRC2 complex members are particularly prevalent in T-ALL cases 

harboring mutations of the IL7R-JAK signaling pathway. We speculate that such epigenetic 

mutations could result in chromatin changes that will affect the accessibility of STAT5 target 

genes for transcription, cooperating in this way with the activation of the IL7R-JAK-STAT 

signaling pathway. Functional studies are needed to understand the underlying mechanism 

of this association. 
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Table 1. Targeted sequencing summary of 155 T-ALL samples 
 

 
Design A  

(n=80 T-ALL cases) 
Design B  

(n=75 T-ALL samples) 
Design information     
Number of genes in design 149 141 
Region size of the design (kbp) 472.006 418.373 
Total amplicons in design 23127 19694 
Minimum sequencing required (Mbp) 247.7 229.35 
Sequence information     
Reads passing filtration (Gb) 8.7 (3.0 - 25.0) 4.2 (1.4 - 14.5) 
Reads mapped (%) 98.1 (90.4 - 99.1) 79.6 (41.4 - 96.2) 
Capture efficiency (%)* 60.8 (55 - 66.3) 45.5 (23.2 - 56.5) 
Mean depth 2312 (733 - 6580) 959 (199 - 3586) 
≥ 10x coverage (%)† 97.9 (94.9 - 99.0) 97.0 (91.2 - 98.6) 
≥ 20x coverage (%)† 97.1 (92.6 - 98.8) 95.6 (85.6 - 98.2) 
≥ 50x coverage (%)† 94.9 (87.0 - 98.0) 91.8 (73.1 - 97.2) 
≥ 100x coverage (%)† 91.9 (79.7 - 94.3) 85.3 (57.5 - 96.2) 
≥ 200x coverage (%)† 86.6 (66.7 - 94.3) 73.5 (31.1 - 94.4) 

 
Data are presented median (0.25~0.75quartile).  
*Capture Efficiency (%), the ratio of the read number that mapped to the targeted region to the 

total read number. 
†≥ 10x, 20x, 50x, 100x, 200x coverage (%), the ratio of target regions covered 10, 20, 50, 100 or 

200x to the total number of target regions. 
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Table 2. Overall clinical, immunophenotypic and molecular cytogenetic characteristics of T-ALL 
patients with mutations in the IL7R-JAK signaling pathway 
 

 
  IL7R-JAK signaling pathway 
  

Wt (n=112) Mut (n=43) P 
Type of 

Association   
Clinical               
Gender      0.586   
     Male   83 (74.1%) 30 (69.8%)     
     Female  29 (25.9%) 13 (30.2%)    
Median age (range) 11 (1-63) 12 (2-66) 0.767†   
T-ALL clusters Wt Mut P   
HOXA+ (n=15)  6 (5.4%) 9 (20.9%) 0.006* Positive 
TLX1+ (n=13)   10 (11.2%) 3 (9.7%) 1.000*   
TLX3+ (n=28)  15 (13.5%) 13 (31%) 0.013 Positive 
TAL1/LMO2+ (n=54)   48 (43.2%) 6 (14%) 0.001 Negative 
Immature T-ALL+ (n=14) 4 (4.4%) 10 (25%) 0.001* Positive 
Del9p21 status Wt Mut P   
Wild-type  27 (24.1%) 13 (30.2%)    
Mutant   85 (75.9%) 30 (69.8%) 0.435   
PHF6 status Wt Mut P   
Wild-type  97 (86.6%) 28 (65.1%)    
Mutant   15 (13.4%) 15 (34.9%) 0.002 Positive 
PRC2 status Wt Mut P   
Wild-type  97 (86.6%) 31 (72.1%)    
Mutant   15 (13.4%) 12 (27.9%) 0.033 Positive 
WT1 status   Wt Mut P   
Wild-type  102 (91.1%) 30 (69.8%)    
Mutant   10 (8.9%) 13 (30.2%) 0.001 Positive 

 
Wt: wild-type; Mut: mutant; P: P value. Median age indicated in years. 
Significant P values are indicated in bold; all P values were calculated by using Pearson's χ2 test, 

unless indicated otherwise: *Fisher's exact test; †Mann-Whitney-U test.  
The HOXA+, TLX1+ and TLX3+ and TAL1/LMO2+ groups were based on the presence of 
HOXA, TLX1, TLX3, TAL1 or LMO2 rearrangements or by having a HOXA, TLX1, TLX3 or 
TAL1/LMO2 expression signature. The immature T-ALL group was defined 
immunophenotypically or based on gene expression cluster analysis. 
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Figure Legends 

 

Figure 1. Haloplex target enrichment analyses can be used to identify copy number 

variations. For MAGEC3, KDM6A, MYB and PTPN2 genes, the normalized coverage 

against the on-target mapped nucleotides is plotted for all patients on an arbitrary linear 

scale. In order to find out real copy number variations, for each gene we calculated the first 

quartile (Q1), third quartile (Q3) and the interquartile range (IQR= Q1 – Q3) from the 

normalized coverage values. Samples having a normalized coverage for a particular gene 

greater than Q3+1.5*IQR were considered to have a duplication/amplification in that gene. 

Conversely, samples having a normalized coverage less than Q1-1.5*IQR, were considered 

to carry a deletion. The calculated values for each gene are represented in the graphs as 

dotted lines. For X-chromosome genes, we did those calculations taking along only male or 

female samples. (A) Read depths for MAGEC3 are consistent with patient gender (except 

case number TL91), with females showing a ~2 fold higher coverage than males. While no 

copy number variations were found in MAGEC3, there was evidence for deletion of KDM6A 

in case number 4139. (B) By using Haloplex we were able to confirm the presence of PTPN2 

deletions in all (6/6) PTPN2 positive cases (shown as blue dots in the graphs). MYB 

duplications were confirmed in 64% (9/14) of MYB positive cases (orange dots). Haloplex 

analyses predicted four additional cases carrying MYB duplication (pink dots), which were 

false positive results. 

 

Figure 2. Overview of the genetic lesions identified in the most frequently mutated 

genes in T-ALL. (A) Single nucleotide variants, indels and copy number variations are 

shown for the 40 genes we found mutated in more than 4% of the cases in our series. Each 

type of mutation is indicated by different color. Age, gender and T-ALL characteristics are 

also shown for each patient (bottom table). (B) Spectrum of genetic lesions in IL7R-JAK 

signaling members (IL7R, JAK3, JAK1 and STAT5 genes), PHF6, PRC2 complex members 

(SUZ12, EZH2 and EED) and WT1. The cases having PHF6, PRC2 and WT1 mutations 

were more frequently found among IL7R-JAK positive cases. 

 

Figure 3. The spectrum of some of the identified genetic lesions closely correlated 

with patient characteristics and T-ALL subtypes. Associations between the most 

frequently mutated genes (top 40 genes, ranked from the most frequently targeted gene) and 

patient characteristics-T-ALL subtypes are shown. Associations with p-values lower than 

0.05, 0.01 and 0.001 are indicated with circles of different sizes. Positive associations are 

shown in orange color, negative associations are shown in blue color. Associations that 

could not be considered as positive or negative are shown in gray color. A = adult group, P = 
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pediatric group, F = female group. 

 

Figure 4. Overview of the identified mutations in the IL7R-JAK signaling pathway 

members. (A) Schematic view of the IL7R, JAK3, JAK1, STAT5A and STAT5B proteins and 

their main protein domains. The mutations found on each of those proteins are shown. (B) 

The variant allele frequencies for JAK3 mutations are shown in the graph. In eight out of the 

23 cases carrying JAK3 mutations (case numbers indicated with asterisks), the M511I 

mutation was detected together with a second mutation of JAK3. (C) Proliferation curve of 

Ba/F3 cells expressing various JAK3 mutants or the empty vector, in the absence of 

cytokines. Mutations that did not stimulate proliferation more than the empty vector were 

considered as not transforming mutants. (D) Western blot analysis of whole cell lysates of 

Ba/F3 cells transformed by the JAK3 mutants V678L and E958K, or empty vector. A protein 

lysate of Ba/F3 cells transformed by the JAK3 M511I mutant (previously described as 

transforming) was included as a positive control.  Phosphorylation of JAK1 and JAK3 was 

detected for all JAK3 mutants. JAK3 protein expression was detected with a human specific 

antibody, not recognizing the endogenous Jak3 expression. The transforming JAK3 mutants 

were able to phosphorylate STAT5. 

 

Figure 5. JAK3 mutations occur predominantly in the major clone at diagnosis. Variant 

allele fractions of the mutated genes identified in the 23 cases with JAK3 mutations. For 

clarity reasons, only those genes mutated in more than 4% of T-ALL cases are shown. JAK3 

mutations are predominantly present in the major clone when two JAK3 mutations or JAK3 

and JAK1 mutations occur together, while a minor clone has the second mutation.  
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1.	  Supplementary	  Methods	  

DNA	  samples	  
T-ALL patients (n=155: 111 children, 44 adults) were collected from various 

institutions. Samples had been previously characterized for oncogene expression 

and classified into oncogenic subgroups according to combined FISH (fluorescence 

in situ hybridization) analyses, immunophenotypic data and oncogene expression. 

Copy number changes of CDKN2A (n=95), MYB (n=115) and PTPN2 (n=80) had 

been previously identified by FISH, MLPA (Multiplex Ligation-dependent Probe 

Amplification) or arrayCGH. The HOXA+, TLX1+ and TLX3+ and TAL1/LMO2+ 

groups were based on the presence of HOXA, TLX1, TLX3, TAL1 or LMO2 

rearrangements or by having a HOXA, TLX1, TLX3 or TAL1/LMO2 expression 

signature. The immature T-ALL group (also known as early thymic or T-cell precursor 

T-ALL) was defined immunophenotypically or based on gene expression cluster 

analysis. 

Haloplex	  library	  preparation	  and	  sequencing	  
Enrichment of the region of interest was performed using the Haloplex Target 

Enrichment System-Fast Protocol. Briefly, 200 ng of DNA per sample was aliquoted 

into 8 digestion reactions, each containing 2 restriction enzymes. DNA from the 8 

reactions was then pooled and hybridized to Haloplex probes, allowing for 

purification using magnetic beads. Purified fragments were ligated, amplified and 

barcoded through 19 cycles of PCR and samples were sequenced on a HiSeq2000 

instrument using a 100 bp paired-end protocol. The HiSeq Paired End Cluster 

Generation Kit was used to generate the clusters and the TruSeq SBS Kit v3 was 

used for sequencing. Image analysis and base calling was performed using the 

Illumina RTA software version 1.13.48.  

The additional custom filtering criteria refers to the fact that we excluded five variants 

that were identified in nearly all samples analyzed. Since those variants were not 

found in dbSNP138, 1000 Genomes or the COSMIC databases, we believe these 

are false positives of data analysis. These are the variants that have been excluded 

from the analyses: 
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Position Gene Nucleotide change Amino acid change 
6037058	   PMS2	   delAA	   	  	  

103141302	   RELN	   C>CT	   2853G>GS	  
90645514	   IDH2	   G>GT	   37R>SR	  
29508805	   NF1	   T>GT	   Splice	  
103629804	   RELN	   insGCCGCC	   Splice	  

Validation	  of	  identified	  genomic	  lesions	  
We sequenced 158 selected variants (Supplementary Table 3) using Sanger 

sequencing. Analysis of the chromatograms from Sanger sequencing was performed 

using CLC Main Workbench 6 (CLC Bio).  

Western	  blot	  analyses	  
Cells were lysed in cold lysis buffer containing 5 mM Na3VO4 and protease inhibitors 

(Complete tablets, Roche). The proteins were separated on NuPAGE NOVEX Bis-

Tris 4%–12% gels (Invitrogen) and transferred to PVDF membranes. Subsequent 

Western blot analysis was performed using primary antibodies directed against JAK1 

(Millipore), JAK3, phospho-STAT5, (Cell Signaling), phospho-JAK1, STAT5 (Santa 

Cruz Biotech.) and β-actin (Sigma). Anti-phospho-JAK1 antibody was used to detect 

both phosphorylated JAK1 and JAK3. Western blot detection was performed using 

secondary antibodies conjugated with horseradish peroxidase (GE Healthcare) and 

western blot lightning plus-ECL (PerkinElmer).  

Statistical	  analyses	  
Statistical analyses were carried out using SPSSstatistics v21. Pearson’s X2 Fisher’s 

exact tests were performed to test significance levels for nominal data distributions, 

whereas the Mann-Whitney U test was used for continuous data. 

Validation	  of	  the	  newly	  identified	  FLT3	  S471C	  mutation	  
The FLT3-S471C variant was generated by GenScript, and was cloned into the 

MSCV-GFP vector. Viral vector production, retroviral transduction and culture of 

Ba/F3 cells were performed as previously described.1 Ba/F3 cells expressing the 

FLT3-ITD (W51 mutation, Kelly et al.2) and FLT3-D835Y were previously described.3 

Western blot analyses were performed as indicated above using antibodies directed 

against FLT3, STAT5 (Santa Cruz Biotech.), anti-phosphoFLT3 (Tyr591), phospho-

STAT5 (Cell Signaling) and β-actin (Sigma). Immunoprecipitations was not 
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performed prior western blot analyses. In order to test the sensitivity of the FLT3-

S471C variant to FLT3 inhibition, Ba/F3 cells expressing FLT3-S471C, FLT3-ITD and 

FLT3-D835Y were treated with 1000nM of the inhibitor AC220 for 30 minutes, and 

analyzed by western blotting. For dose-response experiments we used 8 different 

AC220 concentrations (50, 100, 200, 400, 800, 1600, 3200 and 6400 nM) each in 

triplicate with DMSO as a negative control. The number of viable cells was counted 

after the treatment 24h with ATP-lite 1step reagent (PerkinElmer). Luminescence 

was measured with the multilabel plate readers Envision and Victor X4 

(PerkinElmer). IC50 values were calculated with GraphPad Prism. 
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2.	  Supplementary	  Results	  

In our association analyses, the putative JAK3 passenger mutants (JAK3 
Q283H and Q865E mutants that were unable to transform Ba/F3 cells) were 
initially considered as mutants. We performed the same association analyses 
excluding those JAK3 passenger mutant cases (scored now as wild type).  
 
Then, the frequency of cases with IL7R-JAK mutations in our series is 26.5% 
(instead 27.7%). All the associations we found with the IL7R-JAK positive 
cases remained significant as shown in the table below. 
 

  
IL7R-JAK signaling pathway 

  
Wt (n=114) Mut (n=41) P 

Type of 
Association 

  Clinical               
Gender 

     
0.539   

     Male   85 (74.6%) 28 (68.3%)     
     Female 

 
29 (25.4%) 13 (31.7%) 

 
  

Median age (range) 11 (1-63) 12 (2-66) 0.849†   
T-ALL clusters Wt Mut P   
HOXA+ (n=15) 

 
6 (5.3%) 9 (22%) 0.004‡ Positive 

TLX1+ (n=13)   10 (11.0%) 3 (10.3%) 1.000‡   
TLX3+ (n=28) 

 
15 (13.3%) 13 (32.5%) 0.007 Positive 

TAL1/LMO2+ (n=54)   49 (43.4%) 5 (12.2%) <0.001 Negative 
Immature+ (n=14) 4 (4.3%) 10 (25.6%) 0.001‡ Positive 
Del9p21 status Wt Mut P   
Wild-type 

 
28 (24.6%) 12 (29.3%) 

 
  

Mutant   86 (75.4%) 29 (70.7%) 0.541   
PHF6 status Wt Mut P   
Wild-type 

 
99 (86.8%) 26 (63.4%) 

 
  

Mutant   15 (13.2%) 15 (36.6%) 0.001 Positive 
PRC2 status Wt Mut P   
Wild-type 

 
99 (86.8%) 29 (70.7%) 

 
  

Mutant   15 (13.2%) 12 (29.3%) 0.020 Positive 
WT1 status   Wt Mut P   
Wild-type 

 
104 (91.2%) 30 (68.3%) 

 
  

Mutant   10 (8.8%) 13 (31.7%) 0.001 Positive 
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3.	  Supplementary	  Figures	  

Figure S1. The newly identified mutation in the extracellular domain of FLT3 
(S471C) is a transforming mutation 
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Figure S1. The newly identified mutation in the extracellular domain of FLT3 

(S471C) is a transforming mutation. (A) Sanger sequencing confirmation of the 

FLT3-S471C variant (B) Proliferation curve of Ba/F3 cells expressing FLT3-ITD, 

FLT3-D835Y and FLT3-S471C variants. Cells expressing FLT3-S471C were able to 

grow in the absence of IL3. Ba/F3 cells expressing FLT3-ITD, FLT3-D835Y or Ba/F3 

wild type supplemented with IL-3 were used as a positive control. Cells expressing 

Ba/F3 cells wild type without IL-3 were used as a negative control. (C) Western 

blotting showing the phosphorylation and expression of signaling proteins. The 

expression in Ba/F3 cells of the variant FLT3-S471C resulted in constitutive 

phosphorylation of FLT3 and STAT5. The level of phosphorylation was lower 

compared to Ba/F3 cells carrying FLT3-ITD and FLT3-D835Y that correlates with the 

slower proliferation detected also in comparison with cells expressing FLT3-ITD or 

FLT3-D835Y. The phosphorylation of FLT3 was reduced for all the Ba/F3 upon 

treatment with AC220. However, the phosphorylation of STAT5 could be detected 

after the treatment with AC220 for the cells carrying the S471S and the D835Y 

mutations. (D) We calculated the IC50 values for the AC220 inhibitor treating the 

cells with FLT3-S741C or FLT3-ITD with increasing concentrations of the inhibitor 

and measuring the proliferation after 24 hours of inhibition. Both cell lines were highly 

sensitive to the treatment with AC220 with IC50 values lower than 5 nM. 
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