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Introduction

A major challenge facing today’s cancer researchers is the ability to have highly accurate, rapid, simple, and low-cost tools to identify genetic
variants underlying specific phenotypes found in solid tumors and hematological cancers. The combination of the RainDance ThunderBolts™
System, the ThunderBolts NGS gene panels, and SoftGenetics NextGENe® Software enables targeted sequencing for research of important
oncogenes that have clinical relevance to cancer diseases. The solution features preloaded analysis templates for each gene panel and
pre-defined settings for detecting minor allele frequencies at different sensitivity settings (1% and 5%).

The following application note describes the use of SoftGenetics’ NextGENe software for the customized analysis workflow of sequencing data

using the ThunderBolts Cancer Panel (6 samples - cell lines, plasma and FFPE) and the new ThunderBolts Myeloid Panel (16 samples - cell lines).

ThunderBolts NGS Enrichment Chemistry & Workflow

The ThunderBolts System features award-winning NGS target enrichment instrumentation, pre-validated NGS gene panels for profiling
solid tumors and hematological cancers, as well as open source capabilities for custom assay development. The fast and simple workflow
is optimized for lllumina NGS systems and compatible with all types of DNA (FFPE, tissue, plasma, marrow aspirates, or FNA) samples
with as little as 10 ng of starting DNA. Researchers gain rapid, accurate mutation profiles for a low overall cost per sample.

The ThunderBolts assay chemistry applies RainDance’s proprietary chip-based microfluidic technology to encapsulate PCR reagents,
genomic template (amplifiable DNA) and a library of gene-targeted primer pairs in millions of picoliter-volume droplets. For these assays,
the ThunderBolts System generates millions of single molecule PCRs reactions with ~8 million 5pL-sized droplets per well (8-well chip)
encapsulating either wild type or mutant alleles in each droplet. This allows enrichment of rare allele variants to similar amplification levels as
those of high abundance alleles, enabling ultra-sensitive detection of low percentage mutants in the presence of a high wild type background.

Prepare Sample + Enrich Targets /
Primer Library + Dropletize Sequence
MasterMix
Figure 1: A generalized workflow for ThunderBolts NGS target enrichment.
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For example, the ThunderBolts Cancer Panel targets mutational hotspots in 50 known oncogenes and tumor suppressors with 230 amplicons
from as little as 10ng of amplifiable gDNA. In this example, each sample will yield 16 million droplets (2 wells per sample) containing a total of
10ng of input DNA. There are approximately 3,000 genomic equivalents (GE) per 10 ng of DNA. This results in there being 690,000 droplets
with an amplifiable target (3,000 GE x 230 amplicons) or approximately 1 out of 23 droplets with an amplifiable target. The large number of
droplets generated by the ThunderBolts System allows for truly digital PCR amplification. NGS-ready libraries are generated after a second
PCR step (DirectSeq™ method) that eliminates sequencing library preparation steps by adding lllumina indexing barcodes for sample plexing
on a MiSeq, NextSeq, or HiSeq flow cell(s).

NextGENe® Software

NextGENe version 2.4.1 introduces Autorun Templates for quick project setup using various types of library preparations. The ThunderBolts
Cancer Panels and ThunderBolts Myeloid Panels are installed by default. They can be loaded into the NextGENe Autorun tool to quickly set
up a job to process multiple samples. For each panel, NextGENe includes a template with 5% allele frequency cutoff and a “High Sensitivity”
template with 1% allele frequency cutoff. These pre-defined templates cannot be modified, but they may be used to create new custom
templates. After processing, researchers can view projects in the NextGENe Viewer and (optionally) exported to Geneticist Assistant (figure 2).

- Geneticist
Template Setup NextGENe Viewer Assistant
and Autorun
Figure 2: The NextGENe Template Workflow

Panel Templates Streamline Analysis Workflow
Panel templates offer an easier approach for targeted resequencing data in NextGENe. Templates are used to specify all settings for the
analysis when creating ngjob files. These ngjob files are detected and processed by the Autorun tool.

1. Open the Autorun tool from the NextGENe “Tools” menu.
2. Open the “Job File Editor” from the Autorun “Tool” menu (Figure 3).
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Figure 3 - The Autorun Job File Editor

3. Select a template from the drop-down. Templates for the ThunderBolts Cancer Panel and Myeloid Panel are included with
the software. The “Manage” button allows the templates to be modified and saved as new templates, or for completely custom
templates to be created.

4. Load the raw data (fastq files).
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5. Select a preloaded reference to use for alignment.

6. Set an output location.

7. Click the “Group Jobs” button to open the grouping tool (Figure 4). This makes it easy to split the list of raw data files into
separate sample projects.
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Figure 4 - The Grouping Tool

8. Click OK to save the ngjob file.
9. Set the autorun tool to check the directory containing the saved ngjob file. Start the autorun tool to begin processing.

The provided templates for ThunderBolts panels include multiple preprocessing steps (quality trimming, adapter trimming, and primer
trimming) and settings for alignment and variant calling.

Rapid Results

Speed

16 ThunderBolts Myeloid Panel samples and six ThunderBolts Cancer Panel samples were processed. With enough RAM, it is possible to
process multiple samples simultaneously by simply changing a setting in the autorun tool. This can greatly increase the processing speed,
especially when using computers with multiple cores. The samples were completed in approximately three hours when run with up to four
simultaneous jobs on a server computer with eight cores and 64 GB of RAM.

When run one-at-a-time on a laptop computer with a dual-core 2 GHz processor and eight GB of RAM the total processing time was approximately
seven hours for the first set of samples and two hours for the second.

Alignment and Pre-processing

The total read counts (counting a pair of reads as two) in each sample at different stages of the analysis (raw data, after pre-processing,
and after alignment) are shown in Figure 5. The pre-processing included an adapter trimming and quality trimming step in addition to
primer trimming and filtering out reads shorter than 100 bp after primers were trimmed
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The coverage curve report makes it easy to examine the depth of coverage across all bases in the targeted amplicons. The graphical
summary view of the coverage curve report for Myeloid sample “S1” is shown in Figure 6. It is easy to see that approximately 90% of the
bases have at least 500x coverage, and over 99% of the bases have at least 100x coverage. Figure 7 shows a summary of the minimum,
average, and maximum coverage across targeted bases in all of the samples.
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Accurate Variant Calling

Figure 8 shows the number of variants called in each sample grouped by the type of variant (substitution, insertion or deletion). Samples within a
given panel had similar numbers of variants- the Myeloid Panel is approximately three times larger than the Cancer Panel, likely explaining the
difference between panels. The High Sensitivity panels will call additional low-level variants but additional false positives are likely.

Variant Calling Results
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Discussion

There are several preprocessing steps performed on the data in each panel.

1. Format conversion (FASTQ to FASTA) with adapter sequence trimming, quality trimming (3 or more bases with a score <= 10),
and quality filtering (median score < 20, more than 3 uncalled bases)

2. Trimming the 5 primer

3. Trimming the 3’ primer and removing reads that are less than 100 bp long

After preprocessing the data is aligned to a whole genome reference. An attempt is made to match reads perfectly, then reads are aligned
using a seed-based approach. As seen in figure 6 for sample “S1”, this results in most reads aligning to the reference (over 96% in this
sample) with most of these being aligned to targeted regions (over 97% in this sample). Reads are soft-clipped when multiple mismatches
occur near the end of the read.

Default settings specify that all positions meeting these criteria are called as variants:

+ At least 100x total coverage at the position

* At least 5 occurrences of the variant

* At least 5% variant frequency (1% in the “High Sensitivity” templates)

* Forward/Reverse balance is greater than 0.5 (0.8 for homopolymer indels) unless the variant is present at a frequency above
80%. The balance is calculated as the smaller value of forward/reverse or reverse/forward.

* The position is in the targeted regions.

All of the necessary files (primer sequences, adapter sequence, regions of interest) are included as part of the panel. Any setting(s) can
be adjusted to create a new panel.

After processing, the projects can be visualized in the NextGENe Viewer (Figure 9). New reports can be created and saved in addition

to those already created during processing, which include the mutation report, several coverage curve reports (with different coverage
cutoffs), a distribution report, and an expression report (showing read counts per target). The track manager tool allows for optional tracks
to be imported into the NextGENe reference folder. These tracks (including COSMIC[1], ClinVar [2], and dbNSFP [3]) can then be queried
automatically for every new project or after a project has been run.
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Figure 9 — A ThunderBolts Myeloid Panel project as seen in the Viewer

Projects may also be compared side-by-side in the Variant Comparison Tool. Figure 10 shows a comparison of all 16 Myeloid Panel samples

with the same variant present in all 3 samples that are selected for visualization. This tool allows for filtering based on the presence or absence of

variants in specific projects in addition to the many filters available in the single-project mutation report.
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Figure 10 - Variant Comparison Tool
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Most of the Myeloid samples in this analysis were created from a mixture of three different cell line samples. This was used to determine
expected frequencies of known variants in the mixtures in order to compare to the detected frequencies. The left side of figure 11 shows this
comparison for known SNPs that were detected using the high sensitivity template. Variants with expected frequencies between 1% and 5%
were detected with good sensitivity, but using the high sensitivity template also introduces a number of false positives at low frequencies. The
right side of figure 11 shows the number of false positive SNP calls in each sample that have a frequency above certain values. All tested

samples had less than 10 false positive calls at the 5% level, and a much higher number of false positives with lower frequencies.
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